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Schlieren guides consisting of a suitable transverse profile of optical density in a gas may not only

be used to continuous y focus llght beams of Her mite -Gaussian field distribution but also to guide

such beams around bends.

From the ray equatmn of geometric optics in the toroidal coordinates of a bent cylindrical

schlleren structure (Figure 1) equations of motion are found for the transverse beam center vector

& and the transverse beam radius vector ;. In tbe euqation for ; diffraction spreading is subsequent.

ly taken into account.
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Figure 1. Light Beam Propagation in TOrOid~ COOrdinates (P ,6, z)

For a uniform schlieren structure with
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the beam displacement in the plane of the bend follows from
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where Rc is the radius of curvature. The equation of motion for ; is independent of ~ and EC.

solution of Equation (2) for a constant curvature and coaxial and paraxial beam at the input is

x = & [1 - ..s AS z] (Figure 2)
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Figure 2. Beam Displacement in a Uniform Schlieren Guide of Specific

Convergence c and Constant Curvature I/Rc

Displacing the input beam by x = &eliminates undulations of the beam (Figure 3). Tapered curva-

ture bends (Figure 4) reduce undulations when AL > 1. Large beam deflections are caused by sinu-

soidal curvature distributions of period ~ or any distributions wi~ FOurier cOmPOnents at 0116

period-length. For random curvature distributions, the r.m. s. of beam defle ctmn is

x-’ =& + (m)
(4)

where + ( JF) is the power spectrum of& at the spectral component of the spatial frequency -f?.

Experimental models of umform 8chl~e&n gu~de (Reference 1) with 8 mm I.D. have shown a specific

-2
convergence c = 0.2 m For the beam not to hit the wall in this guide: in case of constant curva-

ture Rc~ 2500 m, in case of tapered curvature Rc~ 1250 m and in case of random curvature of ex-

ponential covariance and tbe most critical correktiOn distance $ = 2.2 m: J&c? 60 km.

Figure 3. Constant Beam Displacement for Matched Input and Output Conditions

in a Constant Curvature Bend
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Figure 4. Linear Curvature Tapers of a Triangular Curvature Distribution

Reduce Beam Undulations

A periodic schlieren structure with

[ 1
2

~.~ 1.( CO+ C1COS2T ;)*
0

(5)

is a suitable model for a schlieren guide with tubular gas lenses (Figure 5). Here the beam displace-

ment follows from

dzx
. (Co+ clcoszm; )x++

dz 2 c

(6)

while y and X are independent of x and Rc. Equation (6) is an inhomogeneous Mathieu equation. For

c1 P2 << I and ~ << 1 the periodic schlieren structure is with resPe ct tO beam displacement in
2T2 7?’

curvature and beam focusing equivalent to a uniform schlieren guide with specific convergence

t-----’ ----1
T-+AT

(7)

Figure 5. Periodic Schlieren Guides of Altcrnatingly Heated and Cooled Pipe Sections
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One tubular gas lens in Figure 5 is with respect to focusing and beam guiding characteristics

nearly equivalent to a uniform schlieren structure wh Ich under optimum conditions bas a spe c~fic

convergence (Reference 2),

~,68g ‘o - 1
cl =

T 2“
(8)

a.

For alternatingly heated and cooled sections of equal diameter: co . 0 and c1 . c1 m Equation (5), for

much wider cooled sections co = c1 = $. The first structure has alte?nat,ng gradient, in the secOnd

tie gradient varies between zero and a maximum. For ~ = 0.1, a. = 4 mm, C02 streaming with

= 2 & and optimum length p, the equivalent specific convergence of the first structure is
‘0

c . 0.182 m-z while of the second structure it is c . 2,2 ~ + 0.02111 m-z. The second term in the

brackets is quite small indicating that the alternating gradient focusing contributes only little to tbe

.2
equivalent specific cmwergence m this case. With c = 2.2 m m a 10 km long schlieren guide of

~. . 4 ~m, the r,m. s. radiu~ of random cmwatum of exponential Covarlance and most critical cor-

relation distance ~ = 0.67 m must be more than 10 km for the r.m. s. beam de flectmn not to hlt the

wall

A quadruple. wire helix (Figure 6) with pairs of helix wires at temperature differences AT will

by thermal diffusion create a helical schlieren structure of refractive index (Reference 3).

AT
where Ch = (n. - 1)— The rectangular components of the equations of motion for the beam

2T az

center vector are in this”case:

dzx . -c
[ 1277 z
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(9)

(lo)

(11)

The beam radius equation IS again independent of beam displacement and guide curvature. For
Ch pz

input beams m the plane of the bend always y(z) ~~ x(z) if only ~ — << 1. EquatiOns (lo) and (11)
??

can under this condition be solved by iteration. Neglecting at first the y-term in Equation ( 10) this

is a degenerate inhomogeneous Mathieu equation. Its solution for any initial conditions of x substituted

into Equation (11 ) makes this equation also an inhomogeneous Mathieu equation.

/(’’’’_+p -----1.—

Figure 6. Helical Schlieren Guide from Thermal Diffusion in a Quadruple-Wire

Helix of Different Temperatures
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With respect to beam chspla.ement m curvature and also with respect to beam mode props.gatlon,

the helical schlleren gu,de IS equivalent to a umfcmm schl~eren guide of spe ciflc convergence

(12)

For a quadruple-wine hellx with a. = 4 mm, p = 1 m at ~ = 0.1 surrounded by C02 at 3 atmospheres

-2
of pressure the equivalent speclflc convergence IS c = 0.2 m

Hence, wdh all schlle ren guides which have so far been stud,e d theoretically or experimentally

umform curvature of typlcall y between 300 and 3000 m rad~us of curvature may be tolerated whale

for random curvature the spectral components of ~ period length have to be kept extremely small,

Furthermore, m all these guides Hermlte -Gaus Sian beam modes propagate as m a straight umform

schlleren guide of the equumlent speclflc convergence no matter what the curvature m and how much

it displaces the beam center off the axis.
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